III B.Tech II Semester(R05) Supplementary Examinations, April/May 2011
 STRUCTURAL ANALYSIS-II (Civil Engineering)
 (For students of $R R$ regulation readmitted to III B.Tech II Semester R05)

Time: 3 hours

Answer any FIVE questions

All questions carry equal marks

1. A segmental arch of horizontal span 25 m and central rise 5 m is hinged at the springings and crown. It carries a point load of 100 kN at a distance of 6 m from the left support hinge. Calculate the reactions at the supports and crown. Find the B.M., radial shear and normal thrust at 5 m from the left support.
2. (a) What is the statical indeterminacy of three-hinged, two-hinged and fixed arches?
(b) Derive the expression for evaluating the horizontal thrust in a two-hinged arch.
(c) What happens if $\mathrm{I}=I_{o} \sec \theta$?
3. (a) Obtain an expression to find the length of a cable, carrying u.d.l of "w" per unit length supported from two points distance "l" apart not at the same level, the lowest point being h_{1} below left support and h_{2} below right support.
(b) What will be the horizontal support reactions?
4. Analyse a two-span continuous beam ABC having the end supports A and C fixed and spans $\mathrm{AB}=4 \mathrm{~m}$ and BC $=6 \mathrm{~m}$. On AB there is a u.d.l. of $10 \mathrm{kN} / \mathrm{m}$ while on BC there is a point load of 30 kN at 2 m from C. The moment of inertia of $B C$ is twice that of $A B$. Sketch the B.M. and S.F.D.
5. Find the support moments of the continuous beam loaded as shown in Figure 5 using slope-deflection method. During loading the support B sinks by 10 mm . Sketch the B.M.D. Take $\mathrm{E}=200 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2}$ and $\mathrm{I}=100 \times$ $10^{-6} \mathrm{~m}^{4}$.

Figure 5
6. During loading the middle support B of the continuous beam ABC , sinks by 10 mm . The ends A and C as fixed as shown in Figure 6 Find the moments at A,B, C using moment distribution method. Sketch the B.M. and S.F. $\operatorname{diagram}\left(\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}\right.$ and $\left.\mathrm{I}=80 \times 10^{-6} \mathrm{~m}^{4}\right)$.

Figure 6
7. Using flexibility method analyse the frame shown in Figure 7 considering only flexural deformations. Sketch the B.M.D. Consider the horizontal and vertical reactions at C as redundants.

Figure 7
8. Briefly discuss the use of one, two and three-dimensional elements used for discretizing in Finite Element Method along with axisymmetric elements.

